Year 5/6 Maths Booklet 4

Steps to Success

Teacher Led

"Draw a triangle with a base of 10.5 cm , and two angles of 62 degrees and 85 degrees. Draw the base line to the given amount

10.5 cm

Put your protractor on one side and put at dot at the given degree (62). The join the dot to the line.

Then do the same the other side for the other given degree (85).

You will notice it doesn't look like a triangle yet! You need to use your ruler to extend the lines until they meet and then rub out any un-needed parts.

"Draw a triangle with a base of 10.5 cm and an angle of 30 degrees at the length of 5 cm . Draw the base line to the given amount

$$
10.5 \mathrm{~cm}
$$

Put your protractor on one side and put at dot at the given degree (30).

This time when you join your dot to the comer, you are going to make sure your line is 5 cm long, this may not go as far at the dot, or past it-it's ok!

Then just join the two ends together.

Fluency

Draw the triangles

$\triangle P Q R$: Length $P Q=4 \mathrm{~cm}$,
Angle $P=120^{\circ}$,
Length $P R=6 \mathrm{~cm}$.
$\Delta X Y Z$: Length $X Y=9 \mathrm{~cm}$,
Length $X Z=10 \mathrm{~cm}$,
Angle $X=30^{\circ}$.
$\triangle A B C$: Length $A B=8 \mathrm{~cm}$,
Length $A C=8 \mathrm{~cm}$,
Angle $A=37^{\circ}$.
$\triangle A B C$: Length $A B=6 \mathrm{~cm}$,
Angle A $=20^{\circ}$,
Angle $B=140^{\circ}$.
$\Delta X Y Z$: Length $X Y=6 \mathrm{~cm}$,
Angle $Y=40^{\circ}$
Angle $X=50^{\circ}$
Δ RST: Length RS $=9 \mathrm{~cm}$
Angle $S=60^{\circ}$
Angle $\mathrm{R}=60^{\circ}$

1. Draw a triangle with one side measuring 3 cm and one angle measuring 40°.

Draw a square with sides measuring 3.5 cm .

Draw a rectangle with sides measuring 2.5 cm and 4.5 cm .
4. Draw a triangle with angles measuring $50^{\circ}, 30^{\circ}$ and 100°.

Problem solving and reasoning

1) a) Tick the drawing which can be completed to make a parallelogram? How do you know?
\qquad

2) Two friends are drawing this triangle in order to find the length of the missing side.

Who is correct? \qquad

Draw the shape to scale, to check your answer. Label the sides and angles.
3) Max has written instructions for drawing a regular pentagon:

- Firstly, draw the 3 cm line for the base.
- Next, draw the four remaining 3 cm lines for the sides.
- Finally, mark and draw all of the 108° angles inside the shape.

Do you agree with the order of Max's instructions? Explain how you would change Max's instructions then draw Max's regular pentagon accurately and to scale.

1) a) Aron has started to draw an isosceles triangle. What mistake has Aron made with his drawing?
\qquad
\qquad
\qquad

b) Help Aron by accurately drawing an isosceles triangle with the same length base.
2) What shape am I?

I am a regular 2D shape.
I have equal side lengths of 2 cm .
The sum of my interior angles is 720°.
I have equal angles of 120°.
Now draw this shape accurately and to scale.

3) a) Look at these scale models of new climbing frames for the playground. Scale: $1 \mathrm{~m}=1 \mathrm{~cm}$
On plain paper, make accurate scale drawings of the models, in order to work out the missing measurements.

b) Now create your own scale model drawing of a piece of playground equipment. Make sure you label the angle sizes and lengths of each side.

Fluency Answers

To be checked with a protractor and ruler

Problem solving and reasoning answers,

> Diagrams are not drawn to scale.

1) a) The drawing on the right can be completed to make a parallelogram. The drawing on the left cannot be completed to make a parallelogram because the two sides are not parallel.
b)

2) Olivia is correct. The length of the missing side is 3.5 cm . Children should also have accurately drawn and labelled the right-angled triangle.

3) Max's instructions are not in the correct order. After drawing the base, he needs to measure and mark one angle then draw the next side and repeat. If he draws all of the sides first, he will not know if he has drawn the angles inside the shape accurately and although he may be able to draw a pentagon this way it will not be a regular pentagon.

Drawing of pentagon should have 5 equal angles of 108° (allow for slight inaccuracies in drawing) and all sides should measure 3 cm .

Diagrams are not drawn to scale.

1) a) Aron's triangle should have two equal angles at the base. If Aron was to continue drawing, he would not create a scalene triangle as all the angles would be different.
b) Accept any drawing of an isosceles triangle with two equal sides, two equal angles at the base and a base length of 5 cm .
2) I am a regular hexagon.

Accept drawing of a regular hexagon with equal sides of 2 cm each and equal angles of approximately 120°.
3) a) Children should have drawn and labelled these shapes. Angles in a quadrilateral add to $\mathbf{3 6 0}$ degrees.

Angles in a heptagon add to $\mathbf{9 0 0}$ degrees. Allow slight inaccuracies in drawing and approximations in angle size.

b) Answers will vary.

Date	
Subject/s	Maths
Learning Objective Ron	To recall and use multiplication and division facts

$3 \times 4=$	$7 \times 8=$	$9 \div 3=$	$36 \div 12=$
$21 \div 7=$	$8 \times 6=$	$12 \times 4=$	$10 \times 8=$
$4 \times 8=$	$3 \times 9=$	$4 \times 7=$	$3 \times 11=$
$40 \div 8=$	$15 \div 3=$	$27 \div 9=$	$20 \div 4=$
$4 \times 11=$	$48 \div 6=$	$8 \div 4=$	$6 \times 8=$
$5 \times 8=$	$11 \times 3=$	$5 \times 8=$	$80 \div 10=$
$24 \div 4=$	$88 \div 11=$	$24 \div 3=$	$4 \times 1=$
$72 \div 8=$	$8 \times 4=$	$9 \times 4=$	$8 \times 5=$
$10 \times 3=$	$16 \div 4=$	$8 \times 11=$	$6 \times 4=$
$5 \times 4=$	$32 \div 8=$	$6 \div 3=$	$3 \div 3=$
$12 \div 3=$	$3 \times 6=$	$48 \div 12=$	$44 \div 11=$
$4 \times 9=$	$8 \div 8=$	$3 \times 4=$	$7 \times 3=$
$11 \times 8=$	$4 \times 3=$	$0 \times 8=$	$12 \times 8=$
$3 \times 12=$	$48 \div 8=$	$18 \div 3=$	$28 \div 4=$
$24 \div 8=$	$30 \div 10=$	$3 \times 3=$	$56 \div 7=$
$27 \div 3=$	$8 \times 9=$	$64 \div 8=$	$4 \times 12=$
$7 \times 4=$	$10 \times 4=$	$36 \div 4=$	$5 \times 3=$
$36 \div 9=$	$16 \div 8=$	$8 \times 8=$	$56 \div 7=$
$56 \div 8=$	$8 \times 3=$	$21 \div 3=$	$4 \times 6=$
$3 \times 0=$	$72 \div 9=$	$4 \times 12=$	$32 \div 4=$
$12 \div 4=$	$3 \times 8=$	$96 \div 12=$	$12 \times 3=$
$33 \div 3=$	$4 \times 4=$	$24 \div 8=$	$7 \times 8=$
$6 \times 3=$	$9 \times 8=$	$2 \times 3=$	$9 \times 3=$
$40 \div 4=$	$4 \div 4=$	$11 \times 4=$	$21 \div 3=$
$28 \div 7=$	$3 \times 7=$	$32 \div 8=$	$8 \times 12=$

Steps to Success

Date	
Subject/s	Maths
Learning Objective	To apply my knowledge of angles

$\stackrel{0}{9}$

This shape is three-quarters of a circle.

			$\begin{aligned} & \text { səəววsos! } \\ & \text { tou s! } \end{aligned}$
		\forall	səəəวsos! s !
$\begin{aligned} & \text { salfue annor } \varepsilon \text { sey } \end{aligned}$	ә\|биие asmqı ue sey		
no^ sof grop \%raqseq əuo			

?

Q4. Here are four triangles on a square grid.

yrew'

\rightarrow

səp!s ןenbe oмı sey

台 总 总

	－nnı 100 S！
4 S！！	

					0				
							D		
			0						

$\%$

Here is an equilateral triangle inside a rectangle.

${ }^{0} 0$

1mark

6
6
\square
6

而 $\stackrel{9}{9}$

o әןбuе әұеןпэеว
Q21.The diagram shows an isosceles triangle and a square on a straight line.

3
$\stackrel{5}{5}$
[L]

Date	
Subject/s	Maths
Learning Objective To	To recall and use multiplication and division facts

1	9×7	30	6×9	59	9×4	
2	8×4	31	12×3	60	7×6	
3	7×10	32	3×8	61	4×8	
4	9×9	33	8×8	62	12×2	
5	6×2	34	6×8	63	3×6	
6	4×7	35	11×7	64	4×10	
7	9×2	36	10×1	65	9×11	
8	12×12	37	10×5	66	3×12	
9	5×9	38	3×5	67	3×10	
10	7×7	39	12×11	68	4×4	
11	11×6	40	6×6	69	4×9	
12	5×11	41	2×9	70	4×11	
13	4×6	42	12×7	71	6×5	
14	9×5	43	11×8	72	7×2	
15	8×12	44	2×6	73	5×12	
16	10×10	45	4×5	74	2×10	
17	7×3	46	4×9	75	4×12	
18	5×8	47	8×2	76	7×8	
19	3×3	48	7×9	77	6×10	
20	10×11	49	12×8	78	12×6	
21	11×2	50	9×4	79	7×12	
22	2×7	51	5×5	80	2×2	
23	6×12	52	10×12	81	11×0	
24	5×7	53	8×11	82	2×12	
25	10×6	54	4×3	83	2×4	
26	9×12	55	2×5	84	8×5	
27	5×4	56	5×10	85	7×11	
28	11×11	57	9×3	86	9×6	
29	7×4	58	8×10	87	10×11	

Steps to Success:

Date			
Subject/s	Maths		
Learning Objective	I can identify 3D shapes		
		$\begin{gathered} \hline S A \\ Q \\ B A \end{gathered}$	
Success Criteria$\checkmark!$	I can name and describe: cube, cuboid, triangular based pyramid,		
	I can visualise the vertices, edges and vertices of the shapes		
	I can begin to look at patterns between prisms	Group Work	
Support	Independent Adult Support ()		
Pre-task: Name and describe the properties of this 3D shape			

Teacher Led

https://corbettmaths.com/2018/04/20/3d-shapes-videos//

What 3D shapes do you know?
Can you find any around your house?
3D shapes have different properties: edges, vertices and faces.
Their faces are the shape of 2D shapes.

\times

These are some 3D shapes

Sphere

Cylinder

Cone

Cube

Hexagonal prism

Square-based pyramid

Cuboid

Triangular prism

PRISMS
Prisms are solids with identical ends.

YES

NO
YES

D	

Below is a list of prisms. Can you come up with a rule that will allow you to work out the number of faces, edges and vertices of the shape, without counting them?

$\begin{aligned} & \text { Typee of } \\ & \text { piptisim } \end{aligned}$	Numberof sides off eachend polygon	Nonberof	$\begin{array}{\|c\|} \hline \text { Nunberaf } \\ \text { edques } \end{array}$	$\begin{array}{\|c\|} \hline \text { Nunberof } \\ \text { weflices } \end{array}$
Triangular prism				
Cube				
$\begin{aligned} & \text { Rectangular } \\ & \text { prism } \end{aligned}$				
Pentagonal prism				
$\begin{gathered} \text { Hexagonal } \\ \text { prism } \end{gathered}$				
Heptagonal prism				
Octagonal prism				
Nonagonal prism				
Decagonal prism				

Problem Solving and Reasoning

Type off prisin	Number of sides of eachend polygon	Number of faces	Number off edges	Number off verfices
Triangular prism	3	5	9	6
Cube	4	6	12	8
Rectangular prism	4	6	12	8
Pentagonal prism	5	7	15	10
Hexagonal prism	6	8	18	12
Heptagonal prism	7	9	21	14
Octagonal prism	8	10	24	16
Nonagonal prism	9	11	27	18
Decagonal prism	10	12	30	20

If we have the end polygon, it will be easy to calculate the number of faces, vertices and edges of each 3D prism.

To calculate the number of faces, we can say that it is the end polygon +2
To calculate the number of edges, we can say it is the end polygon $\times 3$
To calculate the number of vertices, we can say that it is the end polygon $\times 2$

Date			
Subject/s	Maths		
$\begin{aligned} & \text { Learning Objective } \\ & \hline \text { an } \end{aligned}$	To recall and use multiplication and division facts		
$2 \times 2=$	$3 \times 3=$	$4 \times 4=$	$11 \times 10=$
$3 \times 5=$	$6 \times 8=$	$7 \times 5=$	$10 \times 2=$
$4 \times 6=$	$12 \times 5=$	$8 \times 12=$	$3 \times 12=$
$7 \times 4=$	$8 \times 6=$	$10 \times 11=$	$4 \times 9=$
$10 \times 10=$	$10 \times 12=$	$4 \times 2=$	$5 \times 7=$
$9 \times 3=$	$11 \times 2=$	$10 \times 3=$	$9 \times 8=$
$7 \times 2=$	$3 \times 9=$	$6 \times 8=$	$10 \times 7=$
$11 \times 3=$	$4 \times 11=$	$12 \times 10=$	$7 \times 8=$
$10 \times 5=$	$2 \times 5=$	$2 \times 11=$	$4 \times 3=$
$2 \times 4=$	$6 \times 10=$	$8 \times 3=$	$12 \times 4=$
$5 \times 6=$	$10 \times 9=$	$3 \times 4=$	$5 \times 8=$
$7 \times 10=$	$2 \times 12=$	$4 \times 5=$	$8 \times 8=$
$9 \times 2=$	$5 \times 3=$	$7 \times 8=$	$12 \times 2=$
$3 \times 11=$	$9 \times 4=$	$8 \times 10=$	$5 \times 4=$
$10 \times 4=$	$5 \times 5=$	$2 \times 8=$	$9 \times 5=$
$8 \times 5=$	$8 \times 8=$	$8 \times 0=$	$8 \times 11=$
$9 \times 8=$	$9 \times 10=$	$4 \times 12=$	$2 \times 10=$
$4 \times 10=$	$5 \times 2=$	$12 \times 8=$	$4 \times 7=$
$3 \times 2=$	$6 \times 3=$	$3 \times 6=$	$11 \times 5=$
$7 \times 3=$	$6 \times 4=$	$5 \times 10=$	$2 \times 3=$
$4 \times 8=$	$5 \times 11=$	$8 \times 2=$	$8 \times 9=$
$5 \times 9=$	$2 \times 6=$	$3 \times 7=$	$8 \times 4=$
$12 \times 8=$	$3 \times 10=$	$11 \times 4=$	$11 \times 8=$
$2 \times 9=$	$2 \times 7=$	$5 \times 12=$	$12 \times 3=$
$10 \times 8=$	$3 \times 8=$	$0 \times 4=$	$8 \times 7=$

Steps to Success.

Date	
Subject/s	Maths
Learning Objective	To identify and draw nets for 3D shapes
國	

Here is an open box.

Which of the nets will fold together to
make the box?
The grey squares show the base.

Using the squares in your book, draw a net for a triangular prism

Teacher Led

https://corbettmaths.com/2013/12/23/nets-2/

To work out what the net should be of a shape I need to know the following:
How many faces does the shape have?
What are the different shapes of the faces?
Which faces have edges that join them together?
I need to visualise the shape in my head and imagine it unfolding and then the net folding back up again.

Which nets will make a square-based pyramid?

I know a square based pyramid looks like this:

It has four triangular faces that all share an edge with the square and share their other two edges with another triangle. They all join together at the top to make a vertex.

It has one square face at the bottom.

I know the orange shape will work as all the triangular faces share edges and they all join with a point at the top.
I know the yellow one will work as each triangle shares an edge with the square and the net will wrap around the square as you fold it back together.
I know the green one won't work as the two triangles, will be folded to share the same edge with the square and there will be no triangle on the left hand edge of the square.
I know the purple one will work as the two triangles will wrap around on to the two edges of the square that are left.

Fluency

Question 1: Draw the nets for these 3D shapes
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Question 2: Below are nets for various 3D shapes. Name the 3D shapes.
(a)

(b)

(c)

(d)
(e)
(f)

Question 1: Shown below is a net for a cube. Draw all the other possible nets for a cube.

Question 2: Shown below is a net for a square-based pyramid. Draw all other possible nets for a square-based pyramid.

Question 3: Can you spot any mistakes below?

Shown below is a cuboid.

Draw a net for the cuboid.
Each square represents $1 \mathrm{~cm}{ }^{2}$

Use it!
Draw another dot oh the nets so they have a dot on the opposite face when the 3D shape is constructed.

Explain it!
Sally thinks that this net will fold to
create a cube.

Do you agree with Sally?
Explain your answer.

Further Challenge

The net of a cube hass been cut into two. It could benput together in several ways s σ that it could be folded into a cube.

Here are the nets of 9 solid shapes. Each one of these hassheen cut into 2pieces, like the net of the cube.

Can you see which pieces g σ together? Draw them clearly together in your book and label each part with the correct letter.

Question 1
Problem solving and reasoning answers
a)

b)

c)

d)

e,

g)

h)

Question 2

a) Cone
b) Square based pyramid
c) Cuboid
d) Cylinder
e) Triangular Prism

Question 1:

Question 2

Question 3:
Mistake 1: There is no lid for the cuboid.
Mistake 2: There should be 2×2 squares on the right/left sides

