Year 5/6 Maths Booklet 6

Steps to Success

Calculate the mean number of crayons:

Crayon colour	Amount
Blue	14
Green	11
Red	10
Yellow	9

If Jack had three pairs of shoes, Alice had 4 pairs of shoes. How many did Fatima have if the mean is 3? Explain how you worked it out.

Teacher Led

https://corbettmaths.com/2012/08/02/the-mean/

The mean is the total of the numbers divided by how many numbers there are.

- To find the mean, add all the numbers together then divide by the number of numbers.
- $\mathrm{Eg} 6+3+100+3+13=125 \div 5=25$
- The mean is 25 .

The mean is not always a whole number.

To find the mean of the above numbers I need to find the total.
$10+8+10+8+8+4=48$
Then divide the total by how many numbers there are
$48 / 6=8$
Mean $=8$
https://www.youtube.com/watch? $v=X X \lg x 7$ oeTpQ\&safe=active
Abby has the following data:

```
14 v 14 14 15
```


If the mean is 12 , which number could v be?

To find out the missing value, when you already know the mean, you need to think about how you would find the mean and then do it in reverse.
If I was finding the mean of these numbers I would add them all up and divide them by how many there are.
$14+v+14+14+15=$ Total
Total/5 = 12
I now need to think what must the total be, if you divide it by 5 and get 12. The total must be 60. I can then use this to find the missing number.
$14+v+14+14+15=60$
$57+v=60$
$V=3$

Fluency

1) $23,15,8,12,26,5,22$, 9 Mean = \square	$\begin{aligned} & \text { 2) } \begin{array}{lllll} 81, & 69, & 72, & 80, & 67, \\ 74, & 71, & 86 \end{array} \\ & \text { Mean }=\square \end{aligned}$
$\begin{aligned} & \text { 3) } \begin{array}{lllllll} 54, & 38, & 52, & 51, & 49, & 46, & 39 \\ 53, & 47, & 42, & 52, & 41 \end{array} \\ & \text { Mean }= \end{aligned}$	4) $25,36,34,37,22,31,38$, Mean =
$\begin{aligned} & \text { 5) } \begin{array}{l} 61,45,52,48,53,49, \\ 46,60,54,58 \\ \text { Mean }= \end{array}, \square \end{aligned}$	$\begin{aligned} & \text { 6) } \begin{array}{l} 19,23,26, \quad 22,31,33,29, \\ 21,30 \\ \text { Mean }=\square \end{array}, \square> \end{aligned}$
$\begin{aligned} & \text { 7) } \begin{array}{l} 95, \quad 88,79,93,82,90,94 \\ 85,91,83 \\ \text { Mean }= \end{array}+\square \end{aligned}$	8) $57,32,45,38,42,54,51$, $39,47,43,36,56$ $\text { Mean }=\square$
$\begin{aligned} & \text { 9) } 36,47,35,28,23,32,49, \\ & 46 \\ & \text { Mean }=\square \end{aligned}$	10) $78,82,80,65,69,72,79$ $\text { Mean }=$ \square

1) Find the mean of the following weights:
$6 \mathrm{~kg}, 8 \mathrm{~kg}, 7 \mathrm{~kg}, 6 \mathrm{~kg}, 8 \mathrm{~kg}, 13 \mathrm{~kg}$,
2) Find the mean of the following times:
$13 \mathrm{~s}, 20 \mathrm{~s}, 27 \mathrm{~s}, 30 \mathrm{~s}, 25 \mathrm{~s}, 28 \mathrm{~s}, 30 \mathrm{~s}, 35 \mathrm{~s}$
3) The mean of three numbers is 7. Two of the numbers are 6 and 12. What is the third?
4) The mean of four numbers is 5 . Three of the numbers are 3,5 , and 8 . What is the fourth?
5) The mean of three numbers is 10 . One of the numbers is 12 .

Write down what the other two numbers could be.
Write down another pair of numbers that are possible.
6) A set of five numbers has a mean of 10

What could the 5 numbers be?
7) Three numbers have a mean of 23

Two of the numbers have a mean of 12
Two of the numbers have a mean of 30
What are the three numbers?

Problem solving and reasoning

Use it!

The mean number of goals scored in 6
football matches was 4.
Use this information to calculate the
missing number of goals:

Match number	Number of goals
1	8
2	4
3	6
4	2
5	1
6	-

The mean number of goals scored by 3 teams was 2 . How many could each team have scored? Can you find at least 10 possible solutions?

Use it! Work out the age of each member of the
family if:

Mum is 48 years old.
Jonny is 4 years older than Curt and 7 years older than Imogen.

Calculate the mean age of the whole family.

Further Challenge

There are four unknown numbers.
The mean of the first two numbers is 4 .
The mean of the first three numbers is 9 .
The mean of all four numbers is 15 .
If one of the four numbers is 2 , what are the others?

Fluency Answers,

$\begin{aligned} & \text { 1) } \begin{array}{l} 23,15,8,12,26,5,22, \\ 9 \end{array} \\ & \quad \text { Mean }=15 \end{aligned}$	$\begin{array}{\|l} \text { 2) } \begin{array}{lllll} 81, & 69, & 72, & 80, & 67, \\ 74 & 71, & 86 \end{array} \\ \text { Mean }=78 \\ 74 \end{array}$
$\begin{aligned} & \text { 3) } \begin{array}{lllllll} 54, & 38, & 52, & 51, & 49, & 46, & 39 \\ 53, & 47, & 42, & 52, & 41 \end{array} \\ & \text { Mean }=47 \end{aligned}$	4) $25,36,34,37,22,31,38$, $\text { Mean }=29$
$\begin{aligned} & \text { 5) } \begin{array}{l} 61, \quad 45,52, \quad 48,53,49,57 \\ 46,60,54,58 \end{array} \\ & \text { Mean }=53 \end{aligned}$	6) $19,23,26,22,31,33,29$, 21, 30 $\text { Mean }=26$
	$\begin{aligned} & \text { 8) } \begin{array}{lllllll} 57, & 32, & 45, & 38, & 42, & 54, & 51, \\ 39, & 47, & 43, & 36, & 56 \end{array} \\ & \\ & \text { Mean }=45 \end{aligned}$
$\begin{aligned} & \text { 9) } \begin{array}{l} 36,47,35,28,23,32,49, \\ 46 \\ \text { Mean }=37 \end{array},=\text {, } \end{aligned}$	10) $78,82,80,65,69,72,79$ $\text { Mean }=75$

Date	
Subject/s	Maths
Learning Objective Ron	To recall and use multiplication and division facts

$3 \times 4=$	$7 \times 8=$	$9 \div 3=$	$36 \div 12=$
$21 \div 7=$	$8 \times 6=$	$12 \times 4=$	$10 \times 8=$
$4 \times 8=$	$3 \times 9=$	$4 \times 7=$	$3 \times 11=$
$40 \div 8=$	$15 \div 3=$	$27 \div 9=$	$20 \div 4=$
$4 \times 11=$	$48 \div 6=$	$8 \div 4=$	$6 \times 8=$
$5 \times 8=$	$11 \times 3=$	$5 \times 8=$	$80 \div 10=$
$24 \div 4=$	$88 \div 11=$	$24 \div 3=$	$4 \times 1=$
$72 \div 8=$	$8 \times 4=$	$9 \times 4=$	$8 \times 5=$
$10 \times 3=$	$16 \div 4=$	$8 \times 11=$	$6 \times 4=$
$5 \times 4=$	$32 \div 8=$	$6 \div 3=$	$3 \div 3=$
$12 \div 3=$	$3 \times 6=$	$48 \div 12=$	$44 \div 11=$
$4 \times 9=$	$8 \div 8=$	$3 \times 4=$	$7 \times 3=$
$11 \times 8=$	$4 \times 3=$	$0 \times 8=$	$12 \times 8=$
$3 \times 12=$	$48 \div 8=$	$18 \div 3=$	$28 \div 4=$
$24 \div 8=$	$30 \div 10=$	$3 \times 3=$	$56 \div 7=$
$27 \div 3=$	$8 \times 9=$	$64 \div 8=$	$4 \times 12=$
$7 \times 4=$	$10 \times 4=$	$36 \div 4=$	$5 \times 3=$
$36 \div 9=$	$16 \div 8=$	$8 \times 8=$	$56 \div 7=$
$56 \div 8=$	$8 \times 3=$	$21 \div 3=$	$4 \times 6=$
$3 \times 0=$	$72 \div 9=$	$4 \times 12=$	$32 \div 4=$
$12 \div 4=$	$3 \times 8=$	$96 \div 12=$	$12 \times 3=$
$33 \div 3=$	$4 \times 4=$	$24 \div 8=$	$7 \times 8=$
$6 \times 3=$	$9 \times 8=$	$2 \times 3=$	$9 \times 3=$
$40 \div 4=$	$4 \div 4=$	$11 \times 4=$	$21 \div 3=$
$28 \div 7=$	$3 \times 7=$	$32 \div 8=$	$8 \times 12=$

Steps to Success

How many US dollars is $£ 40$?

How many pounds is $\$ 30$?

How could you use this graph to work out $\$ 160$ in pounds?

Teacher Led

hetps://corbettmaths.com/2012/08/09/conversion-graphs/
The graph below shows miles to kilometres.
If I wanted to know what 40 miles per hour was in kilometres per hour, I would put my ruler at 40 miles on the x axis, I would then read up until I hit the line and then read across to the y axis. (See the blue line)

40 miles per hour is approximately 63 kilometres per hour.
You can read it the opposite way tor! If I want to know what 130 kilometres per hour is in miles per hour, I would find 130 on the y axis, read across until I hit the line and then read down to the x axis. (See the red line)

Fluency

Question 1:
(a) How long should a 120 mile journey take?
(b) How long should a 270 mile journey take?
(c) Carlos has spent 1 hour travelling. What distance is he expected to have travelled?
(d) Rosie has spent 3.5 hours travelling. What distance is she expected to have travelled?

UK bounds

Apply

Question 1:

Richard has $€ 300$ and $£ 800$.
He buys a flight that costs $\ddagger 900$
He pays use the $€ 300$ and some of the pounds.
Work out how many pounds he has left.

Question 2:

Jenny's weight is 65 kg .
1 stone = 14 pounds.
What is Jenny's weight in stones and pounds?

\circ
$\stackrel{0}{0}$
ω
ω

Q5. The graph shows the total pay (£), that Fatima receives for up to 35 hours
worked.
(squmu $\left.970 \mathrm{~T}_{1}\right)$
(\%)

(b) How much is she paid per hour?
H

Conversion Graph: Degrees Fahrenheit - Degrees Celsius

Write your own questions for the above conversion graph. Remember to create an answer sheet too!

Further Challenge
Think of all the conversions you know and have learnt about this year. Have a go at drawing a conversion line graph.

Answers.

Question 1
(a) 2 hours
(b) 4.5 hours
(c) 60 miles
(d) 210 miles

Question 2

(a) 100zl
(b) 450 zl
(c) $£ 60$
(d) $£ 90$
(e) 250z1
(f) $1000 z$
(g) $£ 160$

Question 3

(a) 8 km
(b) 1.6 km
(c) 3.8 miles
(d) 3 miles
(e) 32 km
(f) 10 miles

Question 1

£650

Question 2

10 stone 3 pounds
a) $130 \mathrm{kmph}=80 \mathrm{mph}$
$70 \mathrm{mph}=112 \mathrm{kmph}$
France hasa higher speed timit
b) $60 \mathrm{mph}=96 \mathrm{kmph}$.

He can traved
$10 \cdot 45$ am $)+15$ mins for a maximum $11.00 \mathrm{am}{ }_{2}^{2+3 \text { mins }}$ for or 3 hous 15 mins.
2.00pm ${ }_{3 \text { hours }} 1$ Smins \quad hour: 96 kmph

3 hours 1 smins. $\quad 3$ hours $=288 \mathrm{kmph}$
(5) a) $£ 350$
b) 5 hows $= \pm 50$ 1 hour $=\star 10$
c) 35 hours $=t 350$
+10 hars at $\begin{gathered} \\ (100 \text { per har }\end{gathered}$
± 550

Date	
Subject/s	Maths
Learning Objective To	To recall and use multiplication and division facts

1	9×7	30	6×9	59	9×4	
2	8×4	31	12×3	60	7×6	
3	7×10	32	3×8	61	4×8	
4	9×9	33	8×8	62	12×2	
5	6×2	34	6×8	63	3×6	
6	4×7	35	11×7	64	4×10	
7	9×2	36	10×1	65	9×11	
8	12×12	37	10×5	66	3×12	
9	5×9	38	3×5	67	3×10	
10	7×7	39	12×11	68	4×4	
11	11×6	40	6×6	69	4×9	
12	5×11	41	2×9	70	4×11	
13	4×6	42	12×7	71	6×5	
14	9×5	43	11×8	72	7×2	
15	8×12	44	2×6	73	5×12	
16	10×10	45	4×5	74	2×10	
17	7×3	46	4×9	75	4×12	
18	5×8	47	8×2	76	7×8	
19	3×3	48	7×9	77	6×10	
20	10×11	49	12×8	78	12×6	
21	11×2	50	9×4	79	7×12	
22	2×7	51	5×5	80	2×2	
23	6×12	52	10×12	81	11×0	
24	5×7	53	8×11	82	2×12	
25	10×6	54	4×3	83	2×4	
26	9×12	55	2×5	84	8×5	
27	5×4	56	5×10	85	7×11	
28	11×11	57	9×3	86	9×6	
29	7×4	58	8×10	87	10×11	

Teacher Led

https://www.youtube.com/watch?v=OWkgfJBfXic\&safe= active
Line graphs are continuous data that are always about time. It could be time in hours, minutes, days, months or years etc.
The steepness of the lines tell you information about how quick the total (y axis) changes.

This is the highest point in the graph so I know that on Monday the total (in this case the temperature) was at it's highest.
 day the line is going down so I know that it is decreasing. It is also a very steep line which shows it has decreased by a large amount.

This is the lowest point in the graph, so I know that on Thursday the total (in this case temperature) was at it's lowest)

1. Below is a line graph that shows how many books are sold in a charity shop over one week.

(a) On which day did the charity shop sell the most books?
(b) On which day did the charity shop sell the least books?
\qquad
(c) How many books were sold on Tuesday?
2. Below is a line graph that shows the population of a village.

(a) What was the population in 1980 ?
\qquad
(b) In which year was the population 700 ?

The population is expected to increase by 120 by 2020.
(c) Work out the expected population in 2020.
3. The table shows the average price of unleaded petrol in England over 5 years.

Year	Price in pence
2011	111
2012	128
2013	133
2014	132
2015	108

(a) Draw a line graph for the data

(b) Between which two consecutive years did the price increase the most?

- Here is a line graph showing a bath time.

Can you write a story to explain what is happening in the graph?

How long did it take to fill the bath?
How long did it take to empty?
Why is there a difference?
What happened when the height of water reached around 16 cm ?

Jill has created a graph to track the growth of a plant in her house.

Jill recorded the following facts about the graph.
a) On the 9th of July the plant was about

9 cm tall.
b)Between the 11th and 19th July the plant grew 5 cm .
c) At the end of the month the plant was twice as tall as it had been on the 13th.
Can you spot and correct Jill's mistakes?

Further Challenge

The class were making number patterns and then making graphs of them.
Several children had plotted graphs of the "times tables". They made good-looking straight lines.
Tom had started on the six times table but had then decided to do something more interesting. He had made the triangular numbers with counters last year. That was a better idea, he thought.

Sa he started to put them on the same graph paper as the unfinished six times table.

"It's not a very good straight line," he remarked to Andy who was sitting next to him.
"I think it's going to cross the six times line," answered Tom, "But you'll have to make a lot more of both of them. I'm going to try square numbers, I bet the tables one will cross that!"

Does the graph of the triangular numbers cross that of the six times table?
And if it does, where?
Dres the graph of square numbers cross these of the times tables?
And if it does, where?

Answers

1. Below is a line graph that shows how many books are sold in a charity shop over one week.

(a) On which day did the charity shop sell the most books?
Thursday
(b) On which day did the charity shop sell the least books?
Satrudg (1)
(c) How many books were sold on Tuesday?
2. Below is a line graph that shows the population of a village.

(a) What was the population in 1980 ?
(1)
(b) In which year was the population 700 ?
(1)

The population is expected to increase by 120 by 2020.
(c) Work out the expected population in 2020 .

$$
\begin{align*}
& 2010 \text { - population is } 990 \\
& 990+120=1110 \tag{1110}
\end{align*}
$$

(2)
3. The table shows the average price of unleaded petrol in England over 5 years.

Year	Price in pence
2011	111
2012	128
2013	133
2014	132
2015	108

(a) Draw a line graph for the data

(2)
(b) Between which two consecutive years did the price increase the most?
$2011 . \ldots$. and... $.2012 \ldots \ldots$
(1)

Answers
Discussions around
what happens to the
water level when
someone gets in the
bath would be
useful.
8 mins to fill the
bath
4 mins to empty
One or two taps
could be used to fill.
Steady rate of flow
to empty
Someone got in the
bath so the water
level was raised.

a) On the 9th July a more accurate measurement would be 7.5 cm .
b) Correct.
c) On the 31st the plant was
approximately 28 cm tall, but on the 13th it was only 10 cm which is not half of 28 cm . The plant was closer to 14 cm on the 17th July.

Date			
Subject/s	Maths		
$\begin{aligned} & \text { Learning Objective } \\ & \hline \text { an } \end{aligned}$	To recall and use multiplication and division facts		
$2 \times 2=$	$3 \times 3=$	$4 \times 4=$	$11 \times 10=$
$3 \times 5=$	$6 \times 8=$	$7 \times 5=$	$10 \times 2=$
$4 \times 6=$	$12 \times 5=$	$8 \times 12=$	$3 \times 12=$
$7 \times 4=$	$8 \times 6=$	$10 \times 11=$	$4 \times 9=$
$10 \times 10=$	$10 \times 12=$	$4 \times 2=$	$5 \times 7=$
$9 \times 3=$	$11 \times 2=$	$10 \times 3=$	$9 \times 8=$
$7 \times 2=$	$3 \times 9=$	$6 \times 8=$	$10 \times 7=$
$11 \times 3=$	$4 \times 11=$	$12 \times 10=$	$7 \times 8=$
$10 \times 5=$	$2 \times 5=$	$2 \times 11=$	$4 \times 3=$
$2 \times 4=$	$6 \times 10=$	$8 \times 3=$	$12 \times 4=$
$5 \times 6=$	$10 \times 9=$	$3 \times 4=$	$5 \times 8=$
$7 \times 10=$	$2 \times 12=$	$4 \times 5=$	$8 \times 8=$
$9 \times 2=$	$5 \times 3=$	$7 \times 8=$	$12 \times 2=$
$3 \times 11=$	$9 \times 4=$	$8 \times 10=$	$5 \times 4=$
$10 \times 4=$	$5 \times 5=$	$2 \times 8=$	$9 \times 5=$
$8 \times 5=$	$8 \times 8=$	$8 \times 0=$	$8 \times 11=$
$9 \times 8=$	$9 \times 10=$	$4 \times 12=$	$2 \times 10=$
$4 \times 10=$	$5 \times 2=$	$12 \times 8=$	$4 \times 7=$
$3 \times 2=$	$6 \times 3=$	$3 \times 6=$	$11 \times 5=$
$7 \times 3=$	$6 \times 4=$	$5 \times 10=$	$2 \times 3=$
$4 \times 8=$	$5 \times 11=$	$8 \times 2=$	$8 \times 9=$
$5 \times 9=$	$2 \times 6=$	$3 \times 7=$	$8 \times 4=$
$12 \times 8=$	$3 \times 10=$	$11 \times 4=$	$11 \times 8=$
$2 \times 9=$	$2 \times 7=$	$5 \times 12=$	$12 \times 3=$
$10 \times 8=$	$3 \times 8=$	$0 \times 4=$	$8 \times 7=$

	${ }_{\sim}^{\sim}$
	한
	$\stackrel{\sim}{\sim}$
	-
	-
	-
-	

question	answer	marks
1	243	1
2	1065	1
3	3.6	1
4	130	1
5	6509	1
6	438	1
7	12	1
8	$\frac{1}{5}$ or $\frac{2}{10}$	1
9	96	1
10	2.111	1
11	125	1
12	6.011	1
13	4900	1
14	$\frac{1}{3}$ or $\frac{2}{6}$	1
15	16014	1
16	5300	1
17	12.16	1
18	598	1
19	70	1
20	514	1
21	6700	1

question	answer	marks
22	$\mathbf{7 2 4 7 4}$	1
23	2.18	1
24	14.74	1
25	$\frac{1178}{24}$	2
26	$\mathbf{2 5 3}$	1
28	$\mathbf{7 3 . 6}$	2
29	$\mathbf{4 2}$	1
30	$\frac{135}{4}$	$\frac{1}{6}$

