Year 5/6 Maths Booklet 3

Teacher Led

https://corbettmaths.com/2012/08/10/angles-in-a-full-circle/
What do you already know?
90 degrees in a right angle
How many right angles are there in a circle? How many degrees must be in a circle?

You also know that there 180 degrees on a straight line and there are two straight lines in a circle.

There are 360degrees in a circle, this may also be called "Around a point".

Angles around a point add up to 360°

If I know one angle is 240 degrees and that angles around a point add to 360 degrees, I need to work out the missing number.
____ + $240=360$
S σ
$360-240=120$ degrees
$X=120$ degrees

Your turn

My turn

If there is more than one known point, I need to add them together first, then subtract from 360. I know that they must all equal 360 as they are all around a point.

$$
95+45+80=220
$$

$360-220=140$
$X=140$ degrees

Your turn

My turn

Vertically opposite
Pairs shown in the same colour

Vertically opposite angles, are also always equal! I can either work this question out as angles around a point or angles on a straight lines.
Looking at this I know 75 degrees $+f=180$ degrees as they are both on
the red straight line.
Sof $=105$ degrees
I also know that e $+f=180$ degrees as they are both on the black straight line, and e is the same as f as they are opposite each other.

Fluency

A3 Find the value of x

B3 Find the values of x and y

A4 Find the size of each of the four angles

B4 Find the values of x and y

Explain itt

Rachel says that it's not possible to calculate all of the missing angles.

Do you agree? Explain why.

Fluency Answers,

A3 Find the value of x

$\underline{2 x=132} \quad x=66$
B3 Find the values of x and y

A4 Find the size of each of the four angles
$\underline{10 x=360 \Rightarrow x=36^{\circ}}$

$36^{\circ}, 72^{\circ}, 108^{\circ}$ and 144°
B4 Find the values of x and y

Problem solving and reasoning answers

Answers
33°
72° because
$360 \div 5=72$
Blue: 180°
Red: 120°
Green: 60°
I disagree because:
$180-157=23$
so $a=23^{\circ}$
because angles, on a straight line
add up to 180
Angles a and c are equal because
they are vertically opposite so $c=$
23°
Then angles around a point add up
to 360° so $b=67^{\circ}$

Date	
Subject/s	Maths
Learning Objective Ron	To recall and use multiplication and division facts

$3 \times 4=$	$7 \times 8=$	$9 \div 3=$	$36 \div 12=$
$21 \div 7=$	$8 \times 6=$	$12 \times 4=$	$10 \times 8=$
$4 \times 8=$	$3 \times 9=$	$4 \times 7=$	$3 \times 11=$
$40 \div 8=$	$15 \div 3=$	$27 \div 9=$	$20 \div 4=$
$4 \times 11=$	$48 \div 6=$	$8 \div 4=$	$6 \times 8=$
$5 \times 8=$	$11 \times 3=$	$5 \times 8=$	$80 \div 10=$
$24 \div 4=$	$88 \div 11=$	$24 \div 3=$	$4 \times 1=$
$72 \div 8=$	$8 \times 4=$	$9 \times 4=$	$8 \times 5=$
$10 \times 3=$	$16 \div 4=$	$8 \times 11=$	$6 \times 4=$
$5 \times 4=$	$32 \div 8=$	$6 \div 3=$	$3 \div 3=$
$12 \div 3=$	$3 \times 6=$	$48 \div 12=$	$44 \div 11=$
$4 \times 9=$	$8 \div 8=$	$3 \times 4=$	$7 \times 3=$
$11 \times 8=$	$4 \times 3=$	$0 \times 8=$	$12 \times 8=$
$3 \times 12=$	$48 \div 8=$	$18 \div 3=$	$28 \div 4=$
$24 \div 8=$	$30 \div 10=$	$3 \times 3=$	$56 \div 7=$
$27 \div 3=$	$8 \times 9=$	$64 \div 8=$	$4 \times 12=$
$7 \times 4=$	$10 \times 4=$	$36 \div 4=$	$5 \times 3=$
$36 \div 9=$	$16 \div 8=$	$8 \times 8=$	$56 \div 7=$
$56 \div 8=$	$8 \times 3=$	$21 \div 3=$	$4 \times 6=$
$3 \times 0=$	$72 \div 9=$	$4 \times 12=$	$32 \div 4=$
$12 \div 4=$	$3 \times 8=$	$96 \div 12=$	$12 \times 3=$
$33 \div 3=$	$4 \times 4=$	$24 \div 8=$	$7 \times 8=$
$6 \times 3=$	$9 \times 8=$	$2 \times 3=$	$9 \times 3=$
$40 \div 4=$	$4 \div 4=$	$11 \times 4=$	$21 \div 3=$
$28 \div 7=$	$3 \times 7=$	$32 \div 8=$	$8 \times 12=$

Teacher Led

Make a triangle with a piece of paper. Rip off the four corners and put them together. What does it make? What do angles in a triangle add up to?
https://www.youtube.com/watch? $\mathrm{v}=$ hEAFyu_tA7g
https://corbettmaths.com/2012/08/10/angles-in-a-triangle/
All angles add up to 180 degrees!
What are the three different types of triangles? What do their properties tell you about the angles they will have?

My turn

I know angles in a triangle add to 180 degrees. $S \sigma 70+60+x=180$ degrees
$70+60=130$
$180-130=50$
$X=50$ degrees

Your turn

I know this is a right angled triangle by the square in the corner. $\mathrm{S} \sigma 90+30+a=180$
$90+30=120$
$180-120=60$
$A=60$ degrees

As this triangle has two sides labelled the same, I know it is an isosceles, so must have two angles the same. The two unknown angles are the same so I know
$30+x+x=180$
$180-30=150$
So if $x+x=150$ I can just divide 150 by 2, s $\sigma x=75$ degrees.

Your turn

Be careful, think about which two angles are the same!

Question 1: Find the size of each missing angle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the size of each missing angle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 6: The ratio of angles in a triangle is 2:3:5
Find the size of the smallest angle.
Question 7: Find the size of each angle

Problem Solving and Reasoning

Prove tt: Mo says,

Use wt How many sentences can you write to express the relationships between the angles in the triahgles?
One has been done for you.

$$
40^{\circ}+a+d=180^{\circ}
$$

(a) 40°
(b) 25°
(c) 50°
(d) 82°
(e) 137°
(f) 39°

Question 2

(a) 110°
(b) 75°
(c) 128°
(d) 78°
(e) 58°
(f) 71°

Question 6: 36°
Question 7: $34^{\circ}, 44^{\circ}$ and 102°
Problem solving and reasoning answers

Mo can't be right
because these two
angles would add
up to 180 degrees,
and the third angle
can't be 0 degrees.
False
The angles could
be:
$42^{\circ}, 42^{\circ}, 96^{\circ}$
or
$42^{\circ}, 69^{\circ}, 69^{\circ}$
Possible
responses:
$20^{\circ}+a+b=180^{\circ}$
$20^{\circ}+c+d=180^{\circ}$
$b=90^{\circ}$
$c=90^{\circ}$
$b=c$
$a=d$
etc.
Children could also
work out the value of
each angle.

Date	
Subject/s	Maths
Learning Objective To	To recall and use multiplication and division facts

1	9×7	30	6×9	59	9×4	
2	8×4	31	12×3	60	7×6	
3	7×10	32	3×8	61	4×8	
4	9×9	33	8×8	62	12×2	
5	6×2	34	6×8	63	3×6	
6	4×7	35	11×7	64	4×10	
7	9×2	36	10×1	65	9×11	
8	12×12	37	10×5	66	3×12	
9	5×9	38	3×5	67	3×10	
10	7×7	39	12×11	68	4×4	
11	11×6	40	6×6	69	4×9	
12	5×11	41	2×9	70	4×11	
13	4×6	42	12×7	71	6×5	
14	9×5	43	11×8	72	7×2	
15	8×12	44	2×6	73	5×12	
16	10×10	45	4×5	74	2×10	
17	7×3	46	4×9	75	4×12	
18	5×8	47	8×2	76	7×8	
19	3×3	48	7×9	77	6×10	
20	10×11	49	12×8	78	12×6	
21	11×2	50	9×4	79	7×12	
22	2×7	51	5×5	80	2×2	
23	6×12	52	10×12	81	11×0	
24	5×7	53	8×11	82	2×12	
25	10×6	54	4×3	83	2×4	
26	9×12	55	2×5	84	8×5	
27	5×4	56	5×10	85	7×11	
28	11×11	57	9×3	86	9×6	
29	7×4	58	8×10	87	10×11	

Teacher Led

https://corbettmaths.com/2013/03/17/angles-in-quadrilaterals/

What are the angles in a square? What do these add up to?

All angles in a quadrilateral (four sided shape) add to 360 degrees.

My turn

Your turn

Question 1: Find the size of each missing angle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 4: Shown below are three rhombuses.
Find the size of each missing angle.
(a)

(b)

(c)

Question 6: Find the size of each missing angle.
(a)

(b)

(c)

Problem Solving and Reasoning
This quadrilateral is split into two two different shapes to prove Adam
triangles.
Urong. Measure and mark on the angles.
Use your knowledge of angles in a
triangle to find the total of angles in a
quadrilateral.
Try splitting other quadrilaterals into
triangles too. What do you notice?

Further Challenge

Use the same methoo to complete the table.

Shape	Number of sides	Number of triangles	$180 \times$ number of triangles	Sum of internal angles
Square	4	2	180×2	360°
Pentagon	5	3	180×3	540°
Hexagon				

What do you notice?
Can you predict the angle sum of any other polygon?

Question 1

(a) 100°
(b) 150°
(c) 160°
(d) 63°
(e) 31°
(f) 128°

Question 4

(a) $x=98^{\circ}$
$y=82^{\circ}$
$z=82^{\circ}$
(b) $x=75^{\circ}$
$y=105^{\circ}$
$z=75^{\circ}$
(c) $x=23^{\circ} \quad y=157^{\circ} \quad z=157^{\circ}$

Question 6
(a) 106°
(b) 113°
(c) 77°

Problem Solving and Reasoning Answers
Examples:
Trapezium
(without a right
angle)
Rhombus
Parallelogram
Children should
find that angles in
any quadrilateral
will always add up
to 360 degrees.

Date			
Subject/s	Maths		
$\begin{aligned} & \text { Learning Objective } \\ & \hline \text { an } \end{aligned}$	To recall and use multiplication and division facts		
$2 \times 2=$	$3 \times 3=$	$4 \times 4=$	$11 \times 10=$
$3 \times 5=$	$6 \times 8=$	$7 \times 5=$	$10 \times 2=$
$4 \times 6=$	$12 \times 5=$	$8 \times 12=$	$3 \times 12=$
$7 \times 4=$	$8 \times 6=$	$10 \times 11=$	$4 \times 9=$
$10 \times 10=$	$10 \times 12=$	$4 \times 2=$	$5 \times 7=$
$9 \times 3=$	$11 \times 2=$	$10 \times 3=$	$9 \times 8=$
$7 \times 2=$	$3 \times 9=$	$6 \times 8=$	$10 \times 7=$
$11 \times 3=$	$4 \times 11=$	$12 \times 10=$	$7 \times 8=$
$10 \times 5=$	$2 \times 5=$	$2 \times 11=$	$4 \times 3=$
$2 \times 4=$	$6 \times 10=$	$8 \times 3=$	$12 \times 4=$
$5 \times 6=$	$10 \times 9=$	$3 \times 4=$	$5 \times 8=$
$7 \times 10=$	$2 \times 12=$	$4 \times 5=$	$8 \times 8=$
$9 \times 2=$	$5 \times 3=$	$7 \times 8=$	$12 \times 2=$
$3 \times 11=$	$9 \times 4=$	$8 \times 10=$	$5 \times 4=$
$10 \times 4=$	$5 \times 5=$	$2 \times 8=$	$9 \times 5=$
$8 \times 5=$	$8 \times 8=$	$8 \times 0=$	$8 \times 11=$
$9 \times 8=$	$9 \times 10=$	$4 \times 12=$	$2 \times 10=$
$4 \times 10=$	$5 \times 2=$	$12 \times 8=$	$4 \times 7=$
$3 \times 2=$	$6 \times 3=$	$3 \times 6=$	$11 \times 5=$
$7 \times 3=$	$6 \times 4=$	$5 \times 10=$	$2 \times 3=$
$4 \times 8=$	$5 \times 11=$	$8 \times 2=$	$8 \times 9=$
$5 \times 9=$	$2 \times 6=$	$3 \times 7=$	$8 \times 4=$
$12 \times 8=$	$3 \times 10=$	$11 \times 4=$	$11 \times 8=$
$2 \times 9=$	$2 \times 7=$	$5 \times 12=$	$12 \times 3=$
$10 \times 8=$	$3 \times 8=$	$0 \times 4=$	$8 \times 7=$

Steps to Success

Teacher Led

https://corbettmaths.com/2013/03/04/drawing-angles/

1. Start by drawing a base line with a ruler!

This line is 9.2 cm long.

2. Place your protractor on one end of the line. The centre point of the protractor needs $\mathrm{to} \mathrm{g} \sigma$ on the very edge of the line, and the horizontal line at the bottom of the protractor, go across the line you have drawn.

3. Put a dot on the size of the angle you want to draw. I am going to use the inside scale because that is the 0 that is on my drawn line. I'm going to draw a 52 degree angle.

4. Remove your protractor and use the ruler to join the edge of your line to the dot!

Question 1: Draw angles of the following size
(a) 20°
(b) 60°
(c) 80°
(d) 40°
(e) 10°
(f) 70°
(g) 50°
(h) 45°
(i) 25°
(j) 85°
(k) 75°
(l) 15°

Question 2: Draw angles of the following size
(a) 100°
(b) 150°
(c) 160°
(d) 120°
(e) 170°
(f) 130°
(g) 110°
(h) 125°

Question 3: Draw angles of the following size
(a) 200°
(b) 240°
(c) 270°
(d) 300°
(e) 320°
(f) 350°
(g) 215°
(h) 255°

Question 1: Sophie has been asked to draw a 60° angle.
She has made a mistake. Explain what she has done wrong.

Question 2: Jonathan has been asked to draw a 150° angle.
He has made a mistake. Explain what he has done wrong.

Always, sometimes or never true?

- Two acute angles next to each other make an obtuse angle.
- Half an obtuse angle is an acute angle.
- 180° is an obtuse angle

Answers

Check with a protractor!

Problem solving and reasoning answers
Question 1 : Sophie has drawn an angle of 120° rather than 60°. she should hive reed the inner numbers

Question 2: Sonethem hes drawer an angle of 30° rather them 150°. The shaula have reed the out hr numbers

- Sometimes
- Always
- Never

