Year 5/6 Maths Booklet 3

	Date				
	Subject/s			Maths	
Lea	rning Objective		To recall and use n	rultiplication and div	ision facts
					5
1)	7 x 2	=	21) 8	8x6 =	
2)	3 x 8	=	22)	7 x 9 =	
3)	4 x 6	=	23) (5 x 7 =	
4)	2 x 9	=	24) 8	8 x 8 =	
5)	6 x 4	=	25) (5 x 3 =	
6)	8 x 4	=	26) 9	9x6 =	
7)	7 x 5	=	27)	7x5 =	
8)	9 x 10	=	28) 8	$8 \times 9 =$	
9)	6 x 6	=	29) 2	$10 \times 7 =$	
1)	6 x	= 18	21)	x 7	= 49
2)	8 x	= 16	22)	8 x	= 72
3)	x 7	= 7	23)	x 6	= 48
4)	x 9	= 45	24)	9 x	= 45
5)	7 x	= 21	25)	x 7	= 63
6)	x 6	= 36	26)	6 x	= 36
7)	x 8	= 40	27)	8 x	= 64
8)	9 x	= 90	28)	x 6	= 42
9)	x 8	= 32	29)	x 9	= 72
10)	x 6	= 24	30)	7 x	= 56
11)	7 x	= 63	31)	x 8	= 48
12)	x 6	= 0	32)	6 x	= 60
13)	x 8	= 80	33)	9 x	= 45
14)	9 x	= 54	34)	x 8	= 72
15)	6 x	= 42	35)	x 7	= 28
16)	x 8	= 56	36)	9 x	= 81
17)	x 9	= 81	37)	x 6	= 6
18)	6 x	= 30	38)	x 8	= 64
19)	8 x	= 48	39)	7 x	= 49
20)	x 9	= 18	40)	x 9	= 54

Date			
Subject/s	Maths		
Learning Objective	Tawark aut angles around a naint		
	to work out drigtes a outra a point		
		<u> </u>	.
		SA	IA
		Å	
Success Criteria	I know angles on a point add to 360°		
✓! 📃	I can add known angles together and subtract from 360°		
	I know opposite angles on two intersecting lines are equal		
Support	Independent Adult Support () Group Work		
Pre-task: Calculate the missing angle of the second			

https://corbettmaths.com/2012/08/10/angles-in-a-full-circle/

What do you already know?

90 degrees in a right angle

How many right angles are there in a circle? How many degrees must be in a circle?

You also know that there 180 degrees on a straight line and there are two straight lines in a circle.

There are 360degrees in a circle, this may also be called "Around a point".

If I know one angle is 240 degrees and that angles around a point add to 360 degrees, I need to work out the missing number.

____ + 240 = 360 Sσ 360—240 = 120 degrees X = 120degrees

240°(

 $\langle \rangle x$

<u>Your turn</u>

If there is more than one known point, I need to add them together first, then subtract from 360. I know that they must all equal 360 as they are all around a point.

95 + 45 + 80 = 220 360-220 = 140 X = 140 degrees

My turn

the red straight line.

I also know that e + f = 180 degrees as they are both on the black straight line, and e is the same as f as they are opposite each other.

Fluency

-	-							 	 	 			
-						 		 	 	 			
<u> </u>			 <u> </u>					 		 			
<u> </u>										 			
<u> </u>													
<u> </u>													
<u> </u>	<u> </u>							 	 	 			
<u> </u>								 		 			
<u> </u>										 			
-							-						

Use It!	Four angles lie on a straight line.
00	One angle is 81°
Prove It!	The other three angles are equal.
8	What size are the other three angles?
	Draw a diagram to prove your answer.
Explain it!	Five equal angles all meet around a point.
00	What is the size of each angle?
	Explain how you know.
Use tt!	Here is a pie chart showing the colour of cars sold by a car dealer.
00	Sales
	Biue
	Green
	The number of blue cars sold is equal to
	the total number of red and green cars sold.
	The number of red cars sold is twice the
	number of green cars sold.
	Work out the inside angle of each section
	or the pie chart.
Explain it!	
TO	1572 2
	eb_
	Packel anus that it's not apprile to
	calculate all of the missing angles.
	Do you agree? Explain why.

Fluency Answers

2x

 $3x^{\circ}$

B4 Find the values of x and y

137

32°

x = 43

36°, 72°, 108° and 144°

xo

138°

B3 Find the values of x and y

X = 66

y = 138

2x = 132

x = 42

 $4x^{\circ}$

	Answers
	33°
ццо	72° because
ıd y	360 ÷ 5 = 72
	Blue: 180°
7	Red: 120°
	Green: 60°
<i>y</i> = 105	I disagree because:
	180 - 157 = 23
	$s\sigma \alpha = 23^{\circ}$
	because angles on a straight line add up to 180°
	Angles a and c are equal because they are vertically opposite so c = 23°
	Then angles around a point add up to 360° so b = 67°

Date			
Subject/s		Maths	
Learning Objective	To recall and u	se multiplication and divisio	n facts
3 × 4 =	7 × 8 =	9 ÷ 3 =	36 ÷ 12 =
21 ÷ 7 =	8 × 6 =	12 × 4 =	10 × 8 =
4 × 8 =	3 × 9 =	4 x 7 =	3 × 11 =
40 ÷ 8 =	15 ÷ 3 =	27 ÷ 9 =	20 ÷ 4 =
4 × 11 =	48 ÷ 6 =	8 ÷ 4 =	6 × 8 =
5 × 8 =	11 × 3 =	5 × 8 =	80 ÷ 10 =
24 ÷ 4 =	88 ÷ 11 =	24 ÷ 3 =	4 × 1 =
72 ÷ 8 =	8 × 4 =	9 × 4 =	8 × 5 =
10 × 3 =	16 ÷ 4 =	8 × 11 =	6 × 4 =
5 × 4 =	32 ÷ 8 =	6 ÷ 3 =	3 ÷ 3 =
12 ÷ 3 =	3 × 6 =	48 ÷ 12 =	44 ÷ 11 =
4 × 9 =	8 ÷ 8 =	3 × 4 =	7 × 3 =
11 × 8 =	4 × 3 =	0 x 8 =	12 × 8 =
3 × 12 =	48 ÷ 8 =	18 ÷ 3 =	28 ÷ 4 =
24 ÷ 8 =	30 ÷ 10 =	3 × 3 =	56 ÷ 7 =
27 ÷ 3 =	8 × 9 =	64 ÷ 8 =	4 × 12 =
7 × 4 =	10 × 4 =	36 ÷ 4 =	5 × 3 =
36 ÷ 9 =	16 ÷ 8 =	8 x 8 =	56 ÷ 7 =
56 ÷ 8 =	8 x 3 =	21 ÷ 3 =	4 × 6 =
3 × 0 =	72 ÷ 9 =	4 × 12 =	32 ÷ 4 =
12 ÷ 4 =	3 × 8 =	96 ÷ 12 =	12 × 3 =
33 ÷ 3 =	4 × 4 =	24 ÷ 8 =	7 × 8 =
6 × 3 =	9 × 8 =	2 × 3 =	9 × 3 =
40 ÷ 4 =	4 ÷ 4 =	11 × 4 =	21 ÷ 3 =
28 ÷ 7 =	3 x 7 =	32 ÷ 8 =	8 × 12 =

Date										
Subject/s				Maths	<u>è</u>					
Learning Objective										
			To work ou	ıt angle	s in tria	ngles				
							C A	T A		
							SA	IA		
							S			
Success Criteria	I know an	gles in a tri	angle add to 18	0°						
✓! 📃	I know the	I know that there are 90° in a right angle								
	I can use i gles	my knowled	ge of properties	of sha	pes and	link it to an-				
Support	Indeper	ıdent	Adult Suppo	ort ()	Group Work				
Pre-task: What are the missing angles do you know?	? How	6	b °	a°	L					

Make a triangle with a piece of paper. Rip off the four corners and put them together. What does it make? What do angles in a triangle add up to?

https://www.youtube.com/watch?v=hEAFyu_tA7g

https://corbettmaths.com/2012/08/10/angles-in-a-triangle/

All angles add up to 180 degrees!

What are the three different types of triangles? What do their properties tell you about the angles they will have?

<u>My turn</u>

<u>Your turn</u>

I know angles in a triangle add to 180 degrees. So 70 + 60 + x = 180degrees

X = 50 degrees

I know this is a right angled triangle by the square in the corner. $S\sigma 90 + 30 + a = 180$

90 + 30 = 120 180—120 = 60 A = 60 degrees

30 X

As this triangle has two sides labelled the same, I know it is an isosceles so must have two angles the same. The two unknown angles are the same so I know

30 + x + x = 180180-30 = 150 So if x + x = 150 I can just divide 150 by 2, so x = 75 degrees.

<u>Your turn</u>

Be careful, think about which two angles are the same!

<u>Fluency</u>

Question 1: Find the size of each missing angle.

Question 2: Find the size of each missing angle.

- Question 6: The ratio of angles in a triangle is 2:3:5 Find the size of the smallest angle.
- Question 7: Find the size of each angle

-	-							 		 			
-						 		 	 	 			
<u> </u>			 <u> </u>					 		 			
<u> </u>										 			
<u> </u>													
<u> </u>													
<u> </u>	<u> </u>							 	 	 			
<u> </u>								 		 			
<u> </u>										 			
-							-						

Problem Solving and Reasoning

Use It!

How many sentences can you write to express the relationships between the angles in the triangles? One has been done for you.

b c

 $40^{\circ} + a + d = 180^{\circ}$

Fluency Answers

(a)	40°	(b) 25°	(c) 50°
(d)	82°	(e) 137°	(f) 39°
Que	estion 2		
(a)	110°	(b) 75°	(c) 128°
(d)	78°	(e) 58°	(f) 71°

Question 6: 36°

Question 7: 34°, 44° and 102°

Problem solving and reasoning answers

Mo can't be right
because these two
angles would add
up to 180 degrees,
and the third angle
can't be 0 degrees.
False
The angles could
be:
42°, 42°, 96°
สา
42°, 69°, 69°
Possible
responses:
$20^{\circ} + a + b = 180^{\circ}$
$20^{\circ} + c + d = 180^{\circ}$
$b = 90^{\circ}$
$c = 90^{\circ}$
b = c
a = d
etc.
Children could also
work out the value of
each angle.

Date	
Subject/s	Maths
Learning Objective	Termently and use multiplications and divisions from
	To recail and use multiplication and division facts

1	9 X 7	30	6 x 9	59	9 X 4	
2	8 x 4	31	12 x 3	60	7 x 6	
3	7 x 10	32	3 x 8	61	4 x 8	
4	9 x 9	33	8 X 8	62	12 X 2	
5	6 x 2	34	6 x 8	63	3 x 6	
6	4 x 7	35	11 x 7	64	4 x 10	
7	9 X 2	36	10 x 1	65	9 x 11	
8	12 x 12	37	10 x 5	66	3 x 12	
9	5 X 9	38	3 x 5	67	3 x 10	
10	7 X 7	39	12 x 11	68	4 X 4	
11	11 x 6	40	6 x 6	69	4 x 9	
12	5 x 11	41	2 x 9	70	4 x 11	
13	4 x 6	42	12 x 7	71	6 x 5	
14	9 x 5	43	11 x 8	72	7 x 2	
15	8 X 12	44	2 x 6	73	5 x 12	
16	10 x 10	45	4 x 5	74	2 x 10	
17	7 x 3	46	4 x 9	75	4 x 12	
18	5 x 8	47	8 x 2	76	7 x 8	
19	3 x 3	48	7 x 9	77	6 x 10	
20	10 x 11	49	12 x 8	78	12 x 6	
21	11 x 2	50	9 X 4	79	7 x 12	
22	2 x 7	51	5 X 5	80	2 X 2	
23	6 x 12	52	10 x 12	81	11 x 0	
24	5 x 7	53	8 x 11	82	2 x 12	
25	10 x 6	54	4 x 3	83	2 X 4	
26	9 x 12	55	2 x 5	84	8 x 5	
27	5 x 4	56	5 x 10	85	7 x 11	
28	11 x 11	57	9 x 3	86	9 x 6	
29	7 x 4	58	8 x 10	87	10 x 11	

Date			
Subject/s	Maths		
Learning Objective			
	To work out angles in quadrilaterals		
		SA	IA
		Å	Åæ ∕
Success Criteria	I know all quadrilaterals have 4 sides		
✓! 🗐	I know angles in a quadriateral dat to 360° I can use my knowledge of properties of shapes and link it to an-		
Support	Independent Adult Support () Group Work		
Pre-task: What are the missing angles: 63 85 49	? How do you know?		

https://corbettmaths.com/2013/03/17/angles-in-quadrilaterals/

What are the angles in a square? What do these add up to?

All angles in a quadrilateral (four sided shape) add to 360 degrees.

<u>My turn</u>

Your turn

<u>Fluency</u>

(c) 45° x 70^{\circ} (f) 52°

Question 4: Shown below are three rhombuses. Find the size of each missing angle.

Question 6: Find the size of each missing angle.

Question 1: Find the size of each missing angle.

<u> </u>												
<u> </u>							 	 		 		
<u> </u>												
<u> </u>								 				
-												
<u> </u>					 		 	 				
<u> </u>												

Further Challenge

Use the same method to complete the table.

Shape	Number of sides	Number of triangles	180 × number of triangles	Sum of internal angles
Square	4	2	180 × 2	360°
Pentagon	5	3	180 × 3	540°
Hexagon				
Heptagon				

What do you notice?

Can you predict the angle sum of any other polygon?

Answers

Question 1

(a)	100°	(b) 150°	(C)	160°
(d)	63°	(e) 31°	(f)	128°

Question 4

(a)	x = 98°	y = 82°	z = 82°
(b)	x = 75°	y = 105°	z = 75°

(c) $x = 23^{\circ}$ $y = 157^{\circ}$ $z = 157^{\circ}$

Question 6

- (a) 106°
- (b) 113°
- (c) 77°

Problem Solving and Reasoning Answers
Examples:
Trapezium
(without a right
angle)
Rhombus
Parallelogram
Children should
find that angles in
any quadrilateral
will always add up
to 360 degrees.

Date												
Subject/s	Maths											
Learning Objective	To recall and us	e multiplication and division	facts									
2 × 2 =	3 × 3 =	4 × 4 =	11 × 10 =									
3 × 5 =	6 × 8 =	7 × 5 =	10 × 2 =									
4 × 6 =	12 × 5 =	8 × 12 =	3 × 12 =									
7 × 4 =	8 × 6 =	10 × 11 =	4 × 9 =									
10 × 10 =	10 × 12 =	4 x 2 =	5 x 7 =									
9 × 3 =	11 × 2 =	10 × 3 =	9 × 8 =									
7 x 2 =	3 × 9 =	6 × 8 =	10 × 7 =									
11 × 3 =	4 × 11 =	12 × 10 =	7 × 8 =									
10 × 5 =	2 × 5 =	2 × 11 =	4 × 3 =									
2 × 4 =	6 × 10 =	8 × 3 =	12 × 4 =									
5 × 6 =	10 × 9 =	3 × 4 =	5 × 8 =									
7 × 10 =	2 × 12 =	4 × 5 =	8 × 8 =									
9 × 2 =	5 × 3 =	7 x 8 =	12 × 2 =									
3 × 11 =	9 × 4 =	8 × 10 =	5 × 4 =									
10 × 4 =	5 × 5 =	2 × 8 =	9 × 5 =									
8 × 5 =	8 × 8 =	= 0 × 8	8 × 11 =									
9 × 8 =	9 × 10 =	4 × 12 =	2 × 10 =									
4 × 10 =	5 × 2 =	12 × 8 =	4 × 7 =									
3 × 2 =	6 × 3 =	3 × 6 =	11 × 5 =									
7 × 3 =	6 × 4 =	5 × 10 =	2 × 3 =									
4 × 8 =	5 × 11 =	8 × 2 =	8 × 9 =									
5 × 9 =	2 × 6 =	3 × 7 =	8 × 4 =									
12 × 8 =	3 × 10 =	11 × 4 =	11 × 8 =									
2 × 9 =	2 x 7 =	5 × 12 =	12 × 3 =									
10 × 8 =	3 × 8 =	0 × 4 =	8 × 7 =									

Steps to Success

Date										
Subject/s		Math	<u>S</u> ⁄							
Learning Objective										
		I can draw	angles							
				SA	ТА					
				S	Å.					
Success Criteria	I can put my protrac	tor at the end of the line	2							
✓! 📃	I can decide which s I can use my knowle angles	I can decide which scale to use I can use my knowledge of angles around a point to draw reflect angles								
Support	Independent	Adult Support () Group Work							
Pre-task:										
In your book										
Draw a triangle with the and	le 60° and 96°.									
What is the third angle?										
Draw an angle of 200°										

https://corbettmaths.com/2013/03/04/drawing-angles/

1. Start by drawing a base line with a ruler!

This line is 9.2 cm long.

2. Place your protractor on one end of the line. The centre point of the protractor needs to go on the very edge of the line, and the horizontal line at the bottom of the protractor, go across the line you have drawn.

3. Put a dot on the size of the angle you want to draw. I am going to use the inside scale because that is the 0 that is on my drawn line. I'm going to draw a 52 degree angle.

4. Remove your protractor and use the ruler to join the edge of your line to the dot!

<u>Fluency</u>

Question 1: Draw angles of the following size

(a) 20°	(b) 60°	(c) 80°	(d) 40°
(e) 10°	(f) 70°	(g) 50°	(h) 45°
(i) 25°	(j) 85°	(k) 75°	(l) 15°
Question 2:	Draw angles of the foll	owing size	
(a) 100°	(b) 150°	(c) 160°	(d) 120°
(e) 170°	(f) 130°	(g) 110°	(h) 125°
Question 3:	Draw angles of the fol	lowing size	
(a) 200°	(b) 240°	(c) 270°	(d) 300°
(e) 320°	(f) 350°	(g) 215°	(h) 255°

-										 			
-		 					 	 	 	 			
<u> </u>	<u> </u>							 		 			
<u> </u>	-				 		 	 	 	 		-	

Problem Solving and Reasoning

Question 1: Sophie has been asked to draw a 60° angle. She has made a mistake. Explain what she has done wrong.

Question 2: Jonathan has been asked to draw a 150° angle. He has made a mistake. Explain what he has done wrong.

Always, sometimes or never true?

- Two acute angles next to each other make an obtuse angle.
- Half an obtuse angle is an acute angle.
- 180° is an obtuse angle

<u>Answers</u>

Check with a protractor!

Problem solving and reasoning answers

Ruestion 1: Sophie has drawn an angle of 120° rather than 60°. she should have read the inner numbers Question 2: Sollathin has drawn an angle of 30° rather them 150°. The should have read the outly numbers

- Sometimes
- Always
- Never