

Aim

• I can identify and sort materials into electrical conductors or insulators.

Success Criteria

- I can explain why some materials conduct electrical currents and why others don't.
- I can test materials to check if they are conductors or insulators of electrical current.

Parts of a Circuit

Materials

In your groups — look at the materials you have been given and label them.

What materials did you have?

Are there any materials you were unsure about? Which ones?

Insulators and Conductors

In most materials, the atoms look like this:

- The protons and neutrons are attracted to each other as a result of the strong nuclear force, and they form the nucleus.
- The electrons are attracted to protons, but this attraction is not as strong as the strong nuclear force which makes the protons and neutrons stick together.
- Instead, the attraction means that the electrons orbit the protons in the nucleus.
- The electrons cannot move freely in these materials and therefore no electric current can be produced.

These materials are called electrical insulators.

If you create a circuit which includes an **electrical insulator**, it will be **incomplete** (even if it looks complete!) as no **electrons** will flow through the material.

Insulators and Conductors

- In some materials, some
 of the electrons are free
 electrons and can move.
- If you create a circuit with these materials, the free electrons can be made to move in one direction, creating an electric current.
- These materials are called electrical conductors.

N.B. If the circuit has not been set up correctly, then the electric current cannot flow, even through a conductor. Ensure that you check that you have connected all parts of the circuit together.